首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108篇
  免费   13篇
  2024年   1篇
  2016年   1篇
  2015年   3篇
  2014年   4篇
  2013年   1篇
  2012年   4篇
  2011年   5篇
  2010年   6篇
  2009年   5篇
  2008年   5篇
  2007年   16篇
  2006年   5篇
  2005年   5篇
  2004年   4篇
  2003年   3篇
  2002年   7篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1998年   4篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1992年   3篇
  1991年   3篇
  1990年   4篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1985年   1篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1978年   2篇
  1975年   1篇
  1970年   1篇
  1942年   1篇
  1941年   1篇
  1940年   1篇
  1925年   1篇
  1924年   1篇
排序方式: 共有121条查询结果,搜索用时 31 毫秒
91.
During development, changes occur in both the sites of erythropoiesis and the globin genes expressed at each developmental stage. Previous work has shown that high-level expression of human β-like globin genes in transgenic mice requires the presence of the locus control region (LCR). Models of hemoglobin switching propose that the LCR and/or stage-specific elements interact with globin gene sequences to activate specific genes in erythroid cells. To test these models, we generated transgenic mice which contain the human Aγ-globin gene linked to a 576-bp fragment containing the human β-spectrin promoter. In these mice, the β-spectrin Aγ-globin (βsp/Aγ) transgene was expressed at high levels in erythroid cells throughout development. Transgenic mice containing a 40-kb cosmid construct with the micro-LCR, βsp/Aγ-, ψβ-, δ-, and β-globin genes showed no developmental switching and expressed both human γ- and β-globin mRNAs in erythroid cells throughout development. Mice containing control cosmids with the Aγ-globin gene promoter showed developmental switching and expressed Aγ-globin mRNA in yolk sac and fetal liver erythroid cells and β-globin mRNA in fetal liver and adult erythroid cells. Our results suggest that replacement of the γ-globin promoter with the β-spectrin promoter allows the expression of the β-globin gene. We conclude that the γ-globin promoter is necessary and sufficient to suppress the expression of the β-globin gene in yolk sac erythroid cells.  相似文献   
92.
Thermomonospora curvata produced a thermostable β-xylosidase during growth on birch xylan. The enzyme, extracted by sonication of early stationary phase mycelia, was purified by isoelectric focusing and size exclusion HPLC. The isoelectric point was pH 4.8. The molecular weight was estimated to be 102 000 by size exclusion HPLC and 112 000 by SDS-PAGE. Maximal activity occurred at pH 6–7 and 60–68°C. K m values for xylobiose and p-nitrophenyl-β -D-xylopyranoside were 4.0 M and 0.6 M respectively. The enzyme was sensitive to low levels of Hg2+ (50% inhibition at 0.2 μM), but was stimulated by Co2+ and Pb2+. Addition of the xylosidase to a xylanase reaction mixture increased the liberation of xylose equivalents from xylan and decreased the proportion of xylobiose in the hydrolysate. Received 14 April 1997/ Accepted in revised form 21 October 1997  相似文献   
93.
In this study,we determined the contractile properties of single chemically skinnedfibers prepared from the medial gastrocnemius (MG) and soleus (Sol)muscles of adult male rhesus monkeys and assessed the effects of thespaceflight living facility known as the experiment support primatefacility (ESOP). Muscle biopsies were obtained 4 wk before andimmediately after an 18-day ESOP sit, and fiber type was determined byimmunohistochemical techniques. The MG slow type I fiber wassignificantly smaller than the MG type II, Sol type I, and Sol type IIfibers. The ESOP sit caused a significant reduction in the diameter oftype I and type I/II (hybrid) fibers of Sol and MG type II and hybridfibers but no shift in fiber type distribution. Single-fiber peak force(mN and kN/m2) was similarbetween fiber types and was not significantly different from valuespreviously reported for other species. The ESOP sit significantlyreduced the force (mN) of Sol type I and MG type II fibers. Thisdecline was entirely explained by the atrophy of these fiber typesbecause the force per cross-sectional area (kN/m2) was not altered. Peakpower of Sol and MG fast type II fiber was 5 and 8.5 times that of slowtype I fiber, respectively. The ESOP sit reduced peak power by 25 and18% in Sol type I and MG type II fibers, respectively, and, for theformer fiber type, shifted the force-pCa relationship to the right,increasing the Ca2+ activationthreshold and the free Ca2+concentration, eliciting half-maximal activation. The ESOP sit had noeffect on the maximal shortening velocity(Vo) of anyfiber type. Vo ofthe hybrid fibers was only slightly higher than that of slow type Ifibers. This result supports the hypothesis that in hybrid fibers theslow myosin heavy chain would be expected to have a disproportionatelygreater influence onVo.

  相似文献   
94.
Parathyroid hormone (PTH) sensitive adenylyl cyclase activity (ACA) in SaOS-2 cells varies as a function of cell passage. In early passage (EP) cells (< 6), ACA in response to PTH and forskolin (FOR) was relatively low and equivalent, whereas in late passage (LP) cells (> 22), PTH exceeded FOR dependent ACA. Potential biochemical mechanisms for this passage dependent change in ACA were considered. In EP, prolonged exposure to pertussis toxin (PT) markedly enhanced ACA activity in response to PTH, Isoproterenol and Gpp(NH)p, whereas ACA in response to FOR was decreased. In contrast, the identical treatment of LP with PT diminished all ACA in response to PTH, Gpp(NH)p, and FOR. The dose dependent effects of PT on subsequent [(32)P]ADP-ribosylation of its substrates, GTPase activity, as well as FOR-dependent ACA, were equivalent in EP and LP. The relative amounts of G(alpha)i and G(alpha)s proteins, as determined both by Western blot, PT and cholera toxin (CT) dependent [(32)P]ADP-ribosylation, were quantitatively similar in EP and LP. Western blot levels of G(alpha)s and G(alpha)i proteins were not influenced by prior exposure to PT. Both PT and CT dependent [(32)P]ADP-ribosylation were dose-dependently decreased following exposure to PT. However, the PT-dependent decline in CT-dependent [(32)P]ADP-ribosylation occurred with enhanced sensitivity in LP. The protein synthesis inhibitor cycloheximide partially reversed the PT associated decrease in FOR dependent ACA in EP. In contrast, cycloheximide completely reversed the PT associated decrease in FOR and as well as PTH dependent ACA in LP. G(alpha)s activity, revealed by cyc(-) reconstitution, was not altered either by cell passage or exposure to PT. The results suggest that the coupling between the components of the complex may be pivotally important in the differential responsiveness of early and late passage SaOS-2 cells to PTH.  相似文献   
95.
Osteoporosis is a disease manifested in drastic bone loss resulting in osteopenia and high risk for fractures. This disease is generally divided into two subtypes. The first, post-menopausal (type I) osteoporosis, is primarily related to estrogen deficiency. The second, senile (type II) osteoporosis, is mostly related to aging. Decreased bone formation, as well as increased bone resorption and turnover, are thought to play roles in the pathophysiology of both types of osteoporosis. In this study, we demonstrate in murine models for both type I (estrogen deficiency) and type II (senile) osteopenia/osteoporosis that reduced bone formation is related to a decrease in adult mesenchymal stem cell (AMSC) number, osteogenic activity, and proliferation. Decreased proliferation is coupled with increased apoptosis in AMSC cultures obtained from osteopenic mice. Recombinant human bone morphogenetic protein (rhBMP-2) is a highly osteoinductive protein, promoting osteogenic differentiation of AMSCs. Systemic intra-peritoneal (i.p.) injections of rhBMP-2 into osteopenic mice were able to reverse this phenotype in the bones of these animals. Moreover, this change in bone mass was coupled to an increase in AMSCs numbers, osteogenic activity, and proliferation as well as a decrease in apoptosis. Bone formation activity was increased as well. However, the magnitude of this response to rhBMP-2 varied among different stains of mice. In old osteopenic BALB/c male mice (type II osteoporosis model), rhBMP-2 systemic treatment also restored both articular and epiphyseal cartilage width to the levels seen in young mice. In summary, our study shows that AMSCs are a good target for systemically active anabolic compounds like rhBMP-2.  相似文献   
96.
In vitro mycotoxin binding to bovine uterine steroid hormone receptors   总被引:1,自引:0,他引:1  
The mycotoxins, aflatoxin B(1), aflatoxin M(1), aflatoxicol and zearalenone were tested for binding to bovine endometrial estrogen and progestin receptors. Radioinert estradiol-17beta, estrone, testosterone, and cholesterol were evaluated for binding to the estrogen receptor. Zearalenone and aflatoxicol but not aflatoxins B(1) and M(1) competed with estradiol-17beta for the estrogen receptor. The order of binding affinities for the estrogen receptor were zearalenone > estradiol-17beta > estrone > aflatoxicol. The affinity of zearalenone for the estrogen receptor was 2-3 times that of estradiol-17beta. Progesterone, cortisol, radioinert R 5020, and cholesterol were evaluated for binding to the progestin receptor. None of the tested compounds except R 5020 and progesterone competed for the progestin receptor. The significance of aflatoxicol binding to the estrogen receptor is unclear. It is proposed that aflatoxicol binding to the receptor may alter gene expression in target tissues or act at the level of the hypothalamus to inhibit gonadotropin secretion and ovulation. These effects could explain reports of reduced fertility in domestic animals following ingestion of aflatoxin contaminated feedstuffs. It is also suggested that the mechanism of adverse effects on fertility of chronic aflatoxin ingestion in cattle and other livestock should be more thoroughly investigated.  相似文献   
97.
Metabolic effects of low aflatoxin B1 levels on broiler chicks   总被引:1,自引:0,他引:1  
The effects of daily ingestion of aflatoxin B1 (AFB1) on growth, feed intake, plasma glucose, plasma cholesterol, plasma amino acids, plasma albumin, plasma ceruloplasmin, muscle amino acids, liver lipid, and bone strength were studied. For 3 weeks, beginning at an age of 2 days, broiler chicks were dosed daily per os with 50 or 100 micrograms of AFB1 per kg of body weight. Body weight and feed consumption were recorded daily, and metabolic responses were determined at 3 weeks. Treatment with AFB1 did not significantly alter body weight or feed intake. Relative liver weight showed a significant increase at the highest dose, with a significant concomitant increase in liver lipid and decrease in hepatic zinc. Relative spleen and heart weights were not affected by the toxin. Plasma glucose and cholesterol were significantly elevated at the highest dose. AFB1 significantly decreased plasma lysine and histidine and significantly increased muscle histidine, arginine, and valine. AFB1 decreased plasma albumin and markedly increased plasma ceruloplasmin. Dimensions of the long bones (femur and tibiotarsus) were not altered by the toxin. However, AFB1 caused a significant linear decline in the resistance of bone to breakage ("bone breaking strength"). The results indicate that low levels of AFB1 reduced bone strength in broiler chicks. The alterations in blood parameters indicated that AFB1 can disrupt metabolism even at low levels.  相似文献   
98.
Genetic studies have identified a high bone mass of phenotype in both human and mouse when canonical Wnt signaling is increased. Secreted frizzled related protein 1 (sFRP1) is one of several Wnt antagonists and among the loss‐of‐function mouse models in which 32‐week‐old mice exhibit a high bone mass phenotype. Here we show that impact fracture healing is enhanced in this mouse model of increased Wnt signaling at a physiologic level in young (8 weeks) sFRP1?/? mice which do not yet exhibit significant increases in BMD. In vivo deletion of sFRP1 function improves fracture repair by promoting early bone union without adverse effects on the quality of bone tissue reflected by increased mechanical strength. We observe a dramatic reduction of the cartilage callous, increased intramembranous bone formation with bone bridging by 14 days, and early bone remodeling during the 28‐day fracture repair process in the sFRP1?/? mice. Our molecular analyses of gene markers indicate that the effect of sFRP1 loss‐of‐function during fracture repair is to accelerate bone healing after formation of the initial hematoma by directing mesenchymal stem cells into the osteoblast lineage via the canonical pathway. Further evidence to support this conclusion is the observation of maximal sFRP1 levels in the cartilaginous callus of a WT mouse. Hence sFRP1?/? mouse progenitor cells are shifted directly into the osteoblast lineage. Thus, developing an antagonist to specifically inhibit sFRP1 represents a safe target for stimulating fracture repair and bone formation in metabolic bone disorders, osteoporosis and aging. J. Cell. Physiol. 220: 174–181, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
99.
1. The physiological actions of HCN and its salts appear to be due (a) to the ease with which HCN molecules penetrate living cells and then ionizing, exert their influence by means of H ions and CN ions; (b) to the weakness of HCN as an acid, which permits at neutrality or at even slight alkalinity the presence of a considerable amount of free HCN molecules in the presence of their salts; (c) to specific effects occasioned by its chemical activity. 2. The order of resistance of various protozoans to HCN resembles that of the same protozoa to CO2 and to H2S, but is the reverse of their resistance to mineral acids. 3. HCN in acid, neutral, or slightly alkaline media produces intracellular acidity because of the rapid penetration of HCN molecules into the cell. 4. HCN acts specifically on certain species of protozoa, the order of resistance of Paramecia being Paramecium caudatum > Paramecium mullimicronucleatum > Paramecium aurelia > Paramecium bursaria.  相似文献   
100.
Modulator-1 and -2, proposed to be novel ether-linked aminophosphoglycerides, were originally identified as regulators of glucocorticoid receptor function (Bodine, P. V., and Litwack, G. (1990) J. Biol. Chem. 265, 9544-9554). We now demonstrate that these modulators are also potent new stimulators of protein kinase C activity in vitro. These endogenous biomolecules regulate purified protein kinase C activity in a biphasic and dose-dependent pattern, as determined by histone phosphorylation. Modulators, at concentrations within their apparent cellular range, stimulate protein kinase C-catalyzed histone phosphorylation 2-4-fold when added separately, or 10-12-fold when added together. This enhancement of kinase activity apparently is specific for protein kinase C, since neither protein kinase M, nor cAMP-dependent protein kinase A are stimulated by the modulators. The stimulation of purified protein kinase C occurs only when the enzyme has been initially activated by calcium, phosphatidylserine, and diacylglycerol, indicating that the modulators do not simply substitute for one of the enzyme cofactors. In addition, the modulators appear to interact directly with protein kinase C, perhaps with the regulatory domain of the enzyme, since these biomolecules inhibit the binding of phorbol ester to purified protein kinase C. Finally, time-course studies of protein kinase C-catalyzed histone phosphorylation indicate that the velocity of the enzyme reaction is increased by the modulators. Taken together, these results suggest that the modulators are a new class of regulators of protein kinase C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号